By Topic

Fast surface interpolation using multiresolution wavelet transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ming-Haw Yaou ; Inst. of Commun. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Wen-Thong Chang

Discrete formulation of the surface interpolation problem usually leads to a large sparse linear equation system. Due to the poor convergence condition of the equation system, the convergence rate of solving this problem with iterative method is very slow. To improve this condition, a multiresolution basis transfer scheme based on the wavelet transform is proposed. By applying the wavelet transform, the original interpolation basis is transformed into two sets of bases with larger supports while the admissible solution space remains unchanged. With this basis transfer, a new set of nodal variables results and an equivalent equation system with better convergence condition can be solved. The basis transfer can be easily implemented by using an QMF matrix pair associated with the chosen interpolation basis. The consequence of the basis transfer scheme can be regarded as a preconditioner to the subsequent iterative computation method. The effect of the transfer is that the interpolated surface is decomposed into its low-frequency and high-frequency portions in the frequency domain. It has been indicated that the convergence rate of the interpolated surface is dominated by the low-frequency portion. With this frequency domain decomposition, the low-frequency portion of the interpolated surface can be emphasized. As compared with other acceleration methods, this basis transfer scheme provides a more systematical approach for fast surface interpolation. The easy implementation and high flexibility of the proposed algorithm also make it applicable to various regularization problems

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:16 ,  Issue: 7 )