By Topic

A characterization of the stochastic process underlying a stochastic Petri net

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ciardo, G. ; Dept. of Comput. Sci., Coll. of William & Mary, Williamsburg, VA, USA ; German, R. ; Lindemann, C.

Stochastic Petri nets (SPN's) with generally distributed firing times can model a large class of systems, but simulation is the only feasible approach for their solution. We explore a hierarchy of SPN classes where modeling power is reduced in exchange for an increasingly efficient solution. Generalized stochastic Petri nets (GSPN's), deterministic and stochastic Petri nets (DSPN's), semi-Markovian stochastic Petri nets (SM-SPN's), timed Petri nets (TPN's), and generalized timed Petri nets (GTPN's) are particular entries in our hierarchy. Additional classes of SPN's for which we show how to compute an analytical solution are obtained by the method of the embedded Markov chain (DSPN's are just one example in this class) and state discretization, which we apply not only to the continuous-time case (PH-type distributions), but also to the discrete case

Published in:

Software Engineering, IEEE Transactions on  (Volume:20 ,  Issue: 7 )