By Topic

NOx removal by a pipe with nozzle-plate electrode corona discharge system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
T. Ohkubo ; Fac. of Eng., Oita Univ., Japan ; S. Kanazawa ; Y. Nomoto ; Jen-Shih Chang
more authors

The effects of additional gas composition on the corona discharge characteristics in a pipe with nozzle electrode system and the NOx removal characteristics for flue gases are experimentally investigated. The additional gas consists of a mixture of Na+O2+NH3 and a small amount of Ar or CO2, and is introduced to the flue gas stream from the pipe electrode through the corona discharging zone at the tip of nozzles. The results show that corona discharge characteristics and modes are significantly influenced by the composition of the additional gas mixture. Both NOx reduction rate and energy yield of NOx removal increase with decreasing corona discharge input power. NO reduction rate and energy yield can be optimized by the type of the additional gas mixture and the flow rates

Published in:

IEEE Transactions on Industry Applications  (Volume:30 ,  Issue: 4 )