By Topic

A monolithic quad line driver for industrial applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gariboldi, R. ; SGS-Thomson Microelectron., Milan, Italy ; Pulvirenti, F.

The device described in this paper is a new quad line driver to be used in the hostile and noisy industrial environment and developed in mixed technology (BCD: Bipolar, CMOS, DMOS). It consists of four independent line drivers, each of which has a rail-to-rail push-pull output stage realized with power DMOS transistors connected in half bridge configuration. Even though the device is designed to be used primarily in the output cards of programmable controllers, it is a general purpose device, since it can drive any kind of load (resistive, capacitive, or inductive) with an output current of 100 mA. The novel structure of the top driver allows full protection of the output stage against any kind of short circuits and/or overloads, providing a linear current limitation. Furthermore, when a channel is tristated, for every applied voltage ranging from ground to the supply voltage, virtually zero current is absorbed from the output. An innovative high efficiency central charge pump circuit has also been designed and implemented, making both a very wide supply voltage operation (6-50 V) and high switching frequency (up to 500 KHz) possible, The device can also be used as a receiver since the input voltage can swing from -10-50 V

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:29 ,  Issue: 8 )