By Topic

Smart-pixel cellular neural networks in analog current-mode CMOS technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Espejo, S. ; Centro Nacional de Microelectron., Seville Univ., Spain ; Rodriguez-Vazquez, A. ; Dominguez-Castro, R. ; Huertas, J.L.
more authors

This paper presents a systematic approach to design CMOS chips with concurrent picture acquisition and processing capabilities. These chips consist of regular arrangements of elementary units, called smart pixels. Light detection is made with vertical CMOS-BJT's connected in a Darlington structure. Pixel smartness is achieved by exploiting the cellular neural network paradigm, incorporating at each pixel location an analog computing cell which interacts with those of nearby pixels. We propose a current-mode implementation technique and give measurements from two 16 x 16 prototypes in a single-poly double-metal CMOS n-well 1.6-μm technology. In addition to the sensory and processing circuitry, both chips incorporate light-adaptation circuitry for automatic contrast adjustment. They obtain smart-pixel densities up to 89 units/mm2, with a power consumption down to 105 μW/unit and image processing times below 2 μs

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:29 ,  Issue: 8 )