By Topic

Improved time-delay estimates of underwater acoustic signals using beamforming and prefiltering techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Ferguson, B.G. ; Defence Sci. & Technol. Organ., Darlinghurst, NSW, Australia

Passive sonar systems that localize broadband sources of acoustic energy estimate the difference in arrival times (or time delays) of an acoustic wavefront at spatially separated hydrophones, The output amplitudes from a given pair of hydrophones are cross-correlated, and an estimate of the time delay is given by the time lag that maximizes the cross correlation function. Often the time-delay estimates are corrupted by the presence of noise. By replacing each of the omnidirectional hydrophones with an array of hydrophones, and then cross-correlating the beamformed outputs of the arrays, the author shows that the effect of noise on the time-delay estimation process is reduced greatly. Both conventional and adaptive beamforming methods are implemented in the frequency domain and the advantages of array beamforming (prior to cross-correlation) are highlighted using both simulated and real noise-field data. Further improvement in the performance of the broadband cross-correlation processor occurs when various prefiltering algorithms are invoked

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:14 ,  Issue: 3 )