Cart (Loading....) | Create Account
Close category search window
 

Shape matching using LAT and its application to handwritten numeral recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Wakahara, T. ; NTT Human Interface Labs., Kanagawa, Japan

This paper describes an iterative technique for gradually deforming a mask binary image with successive local affine transformation (LAT) operations so as to yield the best match to an input binary image as one new and promising approach toward robust handwritten character recognition. The method uses local shapes in the sense that the LAT of each point at one location is optimized using locations of other points by means of least-squares data fitting using Gaussian window functions. It also uses a multiscale refinement technique that decreases the spread of window functions with each iteration. Especially in handwritten character recognition, structural information is indispensable for robust shape matching or discrimination. The method is enhanced to explicitly incorporate structures by weighting the above least-squares criterion with similarity measures of both topological and geometric features of the mask and input images. Moreover, deformation constraints are imposed on each iteration, not only to promote and stabilize matching convergence but also to suppress an excessive matching process. Shape matching experiments have been successfully carried out using skeletons of totally unconstrained handwritten numerals

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:16 ,  Issue: 6 )

Date of Publication:

Jun 1994

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.