Cart (Loading....) | Create Account
Close category search window
 

A general purpose device simulator coupling Poisson and Monte Carlo transport with applications to deep submicron MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Venturi, F. ; Dept. of Electron., Bologna Univ., Italy ; Smith, R.K. ; Sangiorgi, E.C. ; Pinto, M.R.
more authors

An efficient self-consistent device simulator coupling Poisson equation and Monte Carlo transport suitable for general silicon devices, including those with regions of high doping/carrier densities, is discussed. Key features include an original iteration scheme and an almost complete vectorization of the program. The simulator has been used to characterize nonequilibrium effects in deep submicron nMOSFETs. Substantial overshoot effects are noticeable at gate lengths of 0.25 μm at room temperatures

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:8 ,  Issue: 4 )

Date of Publication:

Apr 1989

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.