By Topic

Hardware designs for exactly rounded elementary functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Schulte, M.J. ; Dept. of Electr. & Comput. Eng., Texas Univ., Austin, TX, USA ; Swartzlander, E.E.

This paper presents hardware designs that produce exactly rounded results for the functions of reciprocal, square-root, 2x, and log2(x). These designs use polynomial approximation in which the terms in the approximation are generated in parallel, and then summed by using a multi-operand adder. To reduce the number of terms in the approximation, the input interval is partitioned into subintervals of equal size, and different coefficients are used for each subinterval. The coefficients used in the approximation are initially determined based on the Chebyshev series approximation. They are then adjusted to obtain exactly rounded results for all inputs. Hardware designs are presented, and delay and area comparisons are made based on the degree of the approximating polynomial and the accuracy of the final result. For single-precision floating point numbers, a design that produces exactly rounded results for all four functions has an estimated delay of 80 ns and a total chip area of 98 mm2 in a 1.0-micron CMOS technology. Allowing the results to have a maximum error of one unit in the last place reduces the computational delay by 5% to 30% and the area requirements by 33% to 77%

Published in:

Computers, IEEE Transactions on  (Volume:43 ,  Issue: 8 )