By Topic

Recursive deconvolution of Bernoulli-Gaussian processes using a MA representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Goussard, Y. ; Ecole Superieure d''Electr., CNRS, Gif-sur-Yvette, France ; Demoment, G.

The authors deal with the problem of deconvolution of Bernoulli-Gaussian random processes observed through linear systems. This corresponds to situations frequently encountered in areas such as geophysics, ultrasonic imaging, and nondestructive evaluation. Deconvolution of such signals is a detection-estimation problem that does not allow purely linear data processing, and the nature of the difficulties greatly depends on the type of representation chosen for the linear system. A MA degenerate state-space representation is used. It presents interesting algorithmic properties and simplifies implementation problems. To obtain a globally recursive procedure, a detection step is inserted in an estimation loop by Kalman filtering. Two recursive detectors based on maximum a posteriori and maximum-likelihood criteria, respectively, are derived and compared

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:27 ,  Issue: 4 )