Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Directional wave spectra by inversion of ERS-1 synthetic aperture radar ocean imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Engen, G. ; NORUT Inf. Tech., Tromso, Norway ; Johnsen, H. ; Krogstad, H.E. ; Barstow, S.F.

An algorithm that extracts the directional ocean wave spectrum from synthetic aperture radar (SAR) ocean image spectra is implemented and applied to spaceborne C-band SAR data obtained from the ERS-1 satellite. The nonlinear iterative algorithm is based on the Hasselmann's forward spectral transform extended to include the range bunching effect. An analytic expression for the wave spectral increment is derived based on the exact gradient of the quasilinear ocean-to-SAR transform. Enhanced wave spectra have been obtained using first-guess wave spectra either from the numerical wave model WINCH operated by the Norwegian Meteorological Institute or synthesized from nondirectional wave data and meteorological conditions. The inverted spectra are compared to in situ directional wave data. It is concluded that the wave imagery from ERS-1 appears to be of excellent quality, and as soon as the backscatter modulation transfer functions are properly understood, satellite SAR data will be an important tool for enhancing and extending conventional wave measurements and results from numerical wave models

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:32 ,  Issue: 2 )