By Topic

Optimal design of large software-systems using N-version programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
N. Ashrafi ; Massachusetts Univ., Boston, MA, USA ; O. Berman ; M. Cutler

Fault tolerant software uses redundancy to improve reliability; but such redundancy requires additional resources and tends to be costly, therefore the redundancy level needs to be optimized. Our optimization models determine the optimal level of redundancy within a software system under the assumption that functionally equivalent software components fail independently. A framework illustrates the tradeoff between the cost of using N-version programming and the improved reliability for a software system. The 2 models deal with: a single task, and multitask software. These software systems consist of several modules where each module performs a subtask and, by sequential execution of modules, a major task is performed. Major assumptions are: 1) several versions of each module, each with an estimated cost and reliability, are available, 2) these module versions fail independently. Optimization models are used to select the optimal set of versions for each module such that the system reliability is maximized and total cost remains within budget

Published in:

IEEE Transactions on Reliability  (Volume:43 ,  Issue: 2 )