By Topic

The external Heapsort

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wegner, L.M. ; Univ.-GH-Kassel, West Germany ; Teuhola, J.I.

Heapsort is an internal sorting method which sorts an array of n records in place in O(n log n) time. Heapsort is generally considered unsuitable for external random-access sorting. By replacing key comparisons with merge operations on pages, it is shown how to obtain an in-place external sort which requires O(m log m) page references, where m is the number of pages which the file occupies. The new sort method (called Hillsort) has several useful properties for advanced database management systems. Not only does Hillsort operate in place, i.e., no additional external storage space is required assuming that the page table can be kept in core memory, but accesses to adjacent pages in the heap require one seek only if the pages are physically contiguous. The authors define the Hillsort model of computation for external random-access sorting, develop the complete algorithm and then prove it correct. The model is next refined and a buffer management concept is introduced so as to reduce the number of merge operations and page references, and make the method competitive to a basic balanced two-way external merge. Performance characteristics are noted such as the worst-case upper bound, which can be carried over from Heapsort, and the average-case behavior, deduced from experimental findings. It is shown that the refined version of the algorithm which is on a par with the external merge sort

Published in:

Software Engineering, IEEE Transactions on  (Volume:15 ,  Issue: 7 )