Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Genetic-algorithm programming environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ribeiro Filho, J.L. ; Dept. of Comput. Sci., Univ. Coll. London, UK ; Treleaven, P.C. ; Alippi, C.

This review classifies genetic-algorithm environments into application-oriented systems, algorithm-oriented systems, and toolkits. It also presents detailed case studies of leading environments. Following Holland's (1975) original genetic algorithm proposal, many variations of the basic algorithm have been introduced. However. an important and distinctive feature of all GAs is the population-handling technique. The original GA adopted a generational replacement policy, according to which the whole population is replaced in each generation. Conversely, the steady-state policy used by many subsequent GAs selectively replaces the population. After we introduce GA models and their programming, we present a survey of GA programming environments. We have grouped them into three major classes according to their objectives: application-oriented systems hide the details of GAs and help users develop applications for specific domains; algorithm-oriented systems are based on specific GA models; and toolkits are flexible environments for programming a range of GAs and applications. We review the available environments and describe their common features and requirements. As case studies, we select some specific systems for more detailed examination. To conclude, we discuss likely future developments in GA programming environments.<>

Published in:

Computer  (Volume:27 ,  Issue: 6 )