Cart (Loading....) | Create Account
Close category search window
 

Machine learning approaches to gene recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Craven, M.W. ; Dept. of Comput. Sci., Wisconsin Univ., Madison, WI, USA ; Shavlik, J.W.

As laboratories round the world produce ever-greater volumes of DNA sequence data, efficient computational analysis techniques are becoming essential. This article surveys several efforts that apply machine learning techniques to gene recognition. Machine learning methods are well suited to sequence analysis because they can learn useful descriptions of genetic concepts when given only instances, rather than explicit definitions, of those concepts. This article looks at several such approaches to gene recognition in two broad classes: search by signal and search by content.<>

Published in:

IEEE Expert  (Volume:9 ,  Issue: 2 )

Date of Publication:

April 1994

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.