By Topic

Reducing local oscillator phase noise limitations on the frequency stability of passive frequency standards: tests of a new concept

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Szekely, C. ; Time & Frequency Div., Nat. Inst. of Stand. & Technol., Boulder, CO, USA ; Walls, F.L. ; Lowe, J.P. ; Drullinger, R.E.
more authors

We report on the experimental test of a new concept for reducing the limitation on short-term frequency stability of passive frequency standards due to local oscillator phase noise. This concept is general and can be applied to many passive frequency standards. Systems that use sinewave modulation to interrogate a stable resonance are limited in short-term frequency stability by phase noise at the second harmonic of the modulation, f/sub m/. This effect limits the fractional frequency stability to approximately /spl sigma//sub v/(/spl tau/7)=0.9(f/sub m///spl nu//sub 0/) (S/sub /spl phi//(2f/sub m/))/sup 1/2//spl tau//sup -1/2/, where /spl nu//sub 0/ is the carrier frequency and S/sub /spl phi//(2f/sub m/) is the phase noise at twice the modulation frequency. (Contributions from higher even harmonics of the modulation generally can be neglected). This new concept uses notch filters at /spl plusmn/2f/sub m/ from the carrier to reduce this effect. Tests on a modified passive rubidium standard demonstrate an improvement of approximately 18 in /spl sigma//sub y/(/spl tau/). The dual notch filters proved to be feasible and were obtained commercially. Measurements suggest that ultimate performances of less than 2/spl times/10/sup -14//spl tau//sup -1/2/ are possible if the atomic resonance has sufficient quality.<>

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:41 ,  Issue: 4 )