By Topic

Coherent self-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in optical fibers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shimizu, K. ; R&D Center, NTT Telecommun. Field Syst., Ibaraki, Japan ; Horiguchi, T. ; Koyamada, Y. ; Kurashima, T.

Time domain reflectometry of spontaneously Brillouin scattered lightwaves in a single-mode optical fiber is demonstrated with a coherent self-heterodyne detection system employing a recently proposed frequency translator, a DFB laser diode, and erbium-doped fiber amplifiers. Since the probe pulse frequency is up-converted by the translator by an amount approximately equal to the Brillouin frequency shift, the self-heterodyne beat frequency can be reduced to a sufficiently low frequency in the IF band. The system enables one-end measurement of the Brillouin frequency shift distribution in optical fibers with a single way dynamic range (SWDR) of 16 dB and a frequency resolution of 5 MHz for a spatial resolution of 100 m

Published in:

Lightwave Technology, Journal of  (Volume:12 ,  Issue: 5 )