By Topic

Computing the scatter component of mammographic images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
R. P. Highnam ; Dept. of Eng. Sci., Oxford Univ., UK ; J. M. Brady ; B. J. Shepstone

The authors build upon a technical report (Tech. Report OUEL 2009/93, Engng. Sci., Oxford Uni., Oxford, UK, 1993) in which they proposed a model of the mammographic imaging process for which scattered radiation is a key degrading factor. Here, the authors propose a way of estimating the scatter component of the signal at any pixel within a mammographic image, and they use this estimate for model-based image enhancement. The first step is to extend the authors' previous model to divide breast tissue into “interesting” (fibrous/glandular/cancerous) tissue and fat. The scatter model is then based on the idea that the amount of scattered radiation reaching a point is related to the energy imparted to the surrounding neighbourhood. This complex relationship is approximated using published empirical data, and it varies with the size of the breast being imaged. The approximation is further complicated by needing to take account of extra-focal radiation and breast edge effects. The approximation takes the form of a weighting mask which is convolved with the total signal (primary and scatter) to give a value which is input to a “scatter function”, approximated using three reference cases, and which returns a scatter estimate. Given a scatter estimate, the more important primary component can be calculated and used to create an image recognizable by a radiologist. The images resulting from this process are clearly enhanced, and model verification tests based on an estimate of the thickness of interesting tissue present proved to be very successful. A good scatter model opens the was for further processing to remove the effects of other degrading factors, such as beam hardening

Published in:

IEEE Transactions on Medical Imaging  (Volume:13 ,  Issue: 2 )