By Topic

Adaptive robot control using neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Saad, M. ; Groupe de Recherche en Electron. de Puissance et Commande Ind., Ecole des Technol. Superieure, Montreal, Que., Canada ; Bigras, P. ; Dessaint, L.-A. ; Al-Haddad, K.

This paper studies the trajectory tracking problem to control the nonlinear dynamic model of a robot using neural networks. These controllers are based on learning from input-output measurements and not on parametric-model-based dynamics. Multilayer recurrent networks are used to estimate the dynamics of the system and the inverse dynamic model. The training is achieved using the backpropagation method. The minimization of the quadratic error is computed by a variable step gradient method. Another multilayer recurrent neural network is added to estimate the joint accelerations. The control process is applied to a two degree-of-freedom (DOF) SCARA robot using a DSP-based controller. Experimental results show the effectiveness of this approach. The tracking trajectory errors are very small and torques expected at manipulator joints are free of chattering.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:41 ,  Issue: 2 )