By Topic

An integral transform technique for analysis of planar dielectric structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sabetfakhri, K. ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA ; Katehi, L.P.B.

This paper presents a novel efficient technique for the study of planar dielectric waveguides for submillimeter-wave and optical applications. In an appropriate integral transform domain, which is determined by the Green's function of the substrate structure, higher-order boundary conditions are enforced in conjunction with Taylor expansions of the fields to derive an equivalent one-dimensional integral equation for the corresponding two-dimensional waveguide geometry. This reduction in the dimensionality of the boundary-value problem can easily be extended to three-dimensional planar structures, with equivalent two-dimensional integral equations being formulated. The reduced integral equations are solved numerically by invoking the method of moments, in which the transform-domain unknowns are expanded in a smooth localized entire-domain basis. It is demonstrated that using orthogonal Hermite-Gauss functions as an expansion basis provides very satisfactory results with only a few expansion terms. For the validation of the technique, single and coupled dielectric slab waveguides are treated

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:42 ,  Issue: 6 )