Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Characterization of coplanar waveguide open end capacitance-theory and experiment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mao, Ming-Hua ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Wu, Ruey-Beei ; Chun-Hsiung Chen ; Chao-Hui Lin

The theory, numerical analysis, analytical approximate formula, measurement technique, and characteristic curves were presented in this paper for the characterization of coplanar waveguide open end capacitance. A novel variational equation was proposed in terms of the scalar potential on the slot aperture and was solved by applying the finite element method. With the available analytical Green's function and exact integration formulas in the space domain, this approach was found to be quite efficient and suitable for analyzing the coplanar waveguide discontinuity problems-even with more complicated geometrical configurations. Numerical results were compared to those obtained numerically and experimentally in previous literature, but did not correlate very well. An analytical formula under narrow-slot assumption was thus derived to render a verification of numerical results. Measurement by utilizing the resonance method were also made and the experimental data confirmed the validity of our theory. The relationship between the capacitance and the physical dimensions was also investigated. The characteristic curves of the open end capacitance were obtained. Also, an empirical formula was established for the open end structures with a thick substrate and narrow gap

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:42 ,  Issue: 6 )