By Topic

Principles of large-signal MESFET operation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Winslow, T.A. ; North Carolina State Univ., Raleigh, NC ; Trew, R.J.

The large-signal RF operating principles of MESFET amplifiers are investigated using a circuit simulator that incorporates a physics based MESFET model which has been augmented with a new gate breakdown model. It is demonstrated that the main saturating mechanisms of the MESFET under large-signal RF operation are forward and reverse conduction of the gate electrode. Maximized RF performance of MESFET amplifiers is obtained by optimally positioning the dynamic load line relative to the RF-IV plane. The position of the dynamic V-I characteristic is determined by device breakdown, bias, and circuit tuning conditions

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:42 ,  Issue: 6 )