By Topic

Application of Wigner-Ville distribution to measurements on transient signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
G. Andria ; Dipartimento di Elettrotecnica ed Elettronica, Politecnico di Bari, Italy ; M. Savino ; A. Trotta

This paper deals with an application of the Wigner-Ville distribution (WVD) and with usual digital-processing techniques, such as the short-time Fourier transform (STFT), used in dedicated instrumentation for measuring nonstationary signals. The processed real signals are made analytic by means of Hilbert transformations; then suitable implementations of the windowed STFT and of the pseudo Wigner-Ville distribution (PWVD) in the time domain have been performed. Particularly, the fast Hartley transform (FHT) is used to evaluate the PWVD in the real domain. Furthermore, the use of an efficient interpolation algorithm and of a suitable flat-top windowing function is proposed in order to give accurate real-time frequency and amplitude measurements, respectively. With this aim, a dedicated digital system was set up, which uses the LabVIEW software to create virtual instruments (VI), suitable to process the data sequences. Finally, applications of the suggested techniques in analyzing noisy data were also investigated

Published in:

IEEE Transactions on Instrumentation and Measurement  (Volume:43 ,  Issue: 2 )