By Topic

Process control and machine learning: rule-based incremental control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Luzeaux, D. ; ETCA, Arcueil, France

In this paper, we discuss a rule-based incremental control program which has been used for controlling a laser cutting robot and in simulation for driving a car on a track, for a car parking manoeuvre, or for parking a truck with one trailer. The core of the paper concerns a learning program, Candide, which learns to control a process without a priori knowledge about the process, by observing random initial evolutions of the process and acquiring a qualitative model. Monotonous or derivative relationships between inputs and outputs are recognized, and then a rule-based incremental controller Is deduced from this model

Published in:

Automatic Control, IEEE Transactions on  (Volume:39 ,  Issue: 6 )