By Topic

Suppression of longitudinal spatial hole-burning effect in λ/4-shifted DFB lasers by nonuniform current distribution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Usami, Masashi ; KDD Co. Ltd., Tokyo, Japan ; Akiba, Shigeyuki

The mode and the output properties of an asymmetric λ/4-shifted DFB (distributed-feedback) laser with a distributed injection current density along the cavity are investigated theoretically and experimentally. Coupled wave equations that describe the longitudinal spatial hole-burning phenomenon due to both distributions of a stimulated recombination carrier density and an injection current density are developed. The calculations show that an appropriate distribution of the injection current similar to the intensity profile can be effectively suppress the longitudinal spatial hole-burning effect from the aspect of threshold gai difference Δαth. A 1.55-μm InGaAsP/InP asymmetric λ/4-shifted DFB laser was fabricated with three divided electrodes. Improvement of the linearity of the output characteristics, decrease of threshold current, stability of the single-mode property, and narrowing of the spectral linewidth by injection current and distribution along the cavity were observed

Published in:

Quantum Electronics, IEEE Journal of  (Volume:25 ,  Issue: 6 )