By Topic

Hidden Markov model approach to skill learning and its application in telerobotics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jie Yang ; Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Yangsheng Xu ; Chen, C.S.

The problem of how human skill can be represented as a parametric model using a hidden Markov (HMM), and how an HMM-based skill model can be used to learn human skill, is discussed. The HMM is feasible for characterizing two stochastic processes, measurable action and immeasurable mental states that are involved in the skill learning. Based on the most likely performance criterion, the best action sequence can be selected from previously measured action data by modeling the skill as an HMM. This selection process can be updated in real-time by feeding new action data and modifying HMM parameters. The implementation of the proposed method in a teleoperation-controlled space robot is discussed. The results demonstrate the feasibility of the method

Published in:

Robotics and Automation, 1993. Proceedings., 1993 IEEE International Conference on

Date of Conference:

2-6 May 1993