By Topic

Feature-preserving clustering of 2-D data for two-class problems using analytical formulas: an automatic and fast approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ja-Chen Lin ; Dept. of Comput. & Inf. Sci., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Wen-Hsiang Tsai

We propose a new method to perform two-class clustering of 2-D data in a quick and automatic way by preserving certain features of the input data. The method is analytical, deterministic, unsupervised, automatic, and noniterative. The computation time is of order n if the data size is n, and hence much faster than any other method which requires the computation of an n-by-n dissimilarity matrix. Furthermore, the proposed method does not have the trouble of guessing initial values. This new approach is thus more suitable for fast automatic hierarchical clustering or any other fields requiring fast automatic two-class clustering of 2-D data. The method can be extended to cluster data in higher dimensional space. A 3-D example is included

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:16 ,  Issue: 5 )