Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

A two-frequency hydroacoustic scatterometer for bubble scattering investigations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nutzel, B. ; FWG, Kiel, Germany ; Herwig, Heinz

High-frequency bubble layer scattering investigations require the measurement of the intensity of backscattered sound and the corresponding depth of the scatterers below the moving surface. Especially at high sea state conditions and high acoustic frequencies, bubbles acoustically mask the surface, i.e., the surface return cannot be detected. However, this environmental condition is the most interesting one in bubble scattering investigations and a reliable method is required to determine the range of the scatterers to the surface displacement. A method for the determination of the vertical profiling of acoustic scattering in the presence of bubbles at high sea state conditions is presented. It is based on the transmission of a low-frequency signal alternately to the high-frequency signal at which the scattering investigations are performed. The only information that is extracted from the low-frequency echo is the onset of the surface return. It is used to compute the true depth of scatterers at the high frequency. Experiments were conducted to determine the optimum low frequency at which the detection of the surface onset in the presence of a high bubble concentration is ensured. A screening ratio is defined to give a measure of the acoustic masking of the sea surface. It is depicted for an extreme wind condition (20 m/s) for the frequency range of 5-25 kHz and as a function of wind speed for 50 kHz measurements. Selected results of subsurface bubble scattering at 50 kHz from experiments under open sea conditions are presented for the wind speed regime from 9 to 22 m/s. Additionally, the two-frequency scatterometer is used to measure sea state characteristics simultaneously to the scattering investigations by remote sensing techniques

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:19 ,  Issue: 1 )