By Topic

A performance study of software and hardware data prefetching schemes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tien-Fu Chen ; Dept. of Comput. Sci. & Inf. Eng., Nat. Chung Cheng Univ., Chiayi, Taiwan ; Baer, Jean-Loup

Prefetching, i.e., exploiting the overlap of processor computations with data accesses, is one of several approaches for tolerating memory latencies. Prefetching can be either hardware-based or software-directed or a combination of both. Hardware-based prefetching, requiring some support unit connected to the cache, can dynamically handle prefetches at run-time without compiler intervention. Software-directed approaches rely on compiler technology to insert explicit prefetch instructions. Mowry et al.'s software scheme (1991,1992) and the authors' hardware approach (1991) are two representative schemes. In this paper, the authors evaluate approximations to these two schemes in the context of a shared-memory multiprocessor environment. Their qualitative comparisons indicate that both schemes are able to reduce cache misses in the domain of linear array references. When complex data access patterns are considered, the software approach has compile-time information to perform sophisticated prefetching whereas the hardware scheme has the advantage of manipulating dynamic information. The performance results from an instruction-level simulation of four benchmarks confirm these observations. Simulations show that the hardware scheme introduces more memory traffic into the network and that the software scheme introduces a non-negligible instruction execution overhead. An approach combining software and hardware schemes is proposed; it shows promise in reducing the memory latency with least overhead

Published in:

Computer Architecture, 1994., Proceedings the 21st Annual International Symposium on

Date of Conference:

18-21 Apr 1994