Cart (Loading....) | Create Account
Close category search window

Sidelobe reduction via adaptive FIR filtering in SAR imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
DeGraaf, S.R. ; Environ. Res. Inst. of Michigan, Ann Arbor, MI, USA

The paper describes a class of adaptive weighting functions that greatly reduce sidelobes, interference, and noise in Fourier transform data. By restricting the class of adaptive weighting functions, the adaptively weighted Fourier transform data can be represented as the convolution of the unweighted Fourier transform with a data adaptive FIR filter where one selects the FIR filter coefficients to maximize signal-to-interference ratio. This adaptive sidelobe reduction (ASR) procedure is analogous to Capon's (1969) minimum variance method (MVM) of adaptive spectral estimation. Unlike MVM, which provides a statistical estimate of the real-valued power spectral density, thereby estimating noise level and improving resolution, ASR provides a single-realization complex-valued estimate of the Fourier transform that suppresses sidelobes and noise. Further, the computational complexity of ASR is dramatically lower than that of MVM, which is critical for large multidimensional problems such as synthetic aperture radar (SAR) image formation. ASR performance characteristics can be varied through the choice of filter order, l1- or l2-norm filter vector constraints and a separable or nonseparable multidimensional implementation. The author compares simulated point scattering SAR imagery produced by the ASR, MVM, and MUSIC algorithms and illustrates ASR performance on three sets of collected SAR imagery

Published in:

Image Processing, IEEE Transactions on  (Volume:3 ,  Issue: 3 )

Date of Publication:

May 1994

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.