By Topic

Use of composite structure to achieve variable rates of thermal expansion in disk drive arms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
J. Toor ; Seagate Corp., Scotts Valley, CA, USA

Summary form only given, as follows. Many drives with either 3.5-in or 5.25-in disks operate without any position feedback mechanism and required that materials used within the drive have carefully controlled coefficients of thermal expansion. Completely eliminating thermal offtrack by simply selecting from available materials is often not possible. A method of fine-tuning the offtrack is presented. The method involves adjusting the relative thickness of materials used in a bimetallic composite structure to provide the expansion desired. A computer model predicts results within the drive and a comparison is made of analytic and experimental results. In addition, an overview of the causes of offtrack under both thermal transient and steady-state conditions is presented.

Published in:

Thermal Phenomena in the Fabrication and Operation of Electronic Components: I-THERM '88, InterSociety Conference on

Date of Conference:

11-13 May 1988