Cart (Loading....) | Create Account
Close category search window

Functional approximation by feed-forward networks: a least-squares approach to generalization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Webb, A.R. ; Defence Res. Inst., Great Malvern, UK

This paper considers a least-squares approach to function approximation and generalization. The particular problem addressed is one in which the training data are noiseless and the requirement is to define a mapping that approximates the data and that generalizes to situations in which data samples are corrupted by noise in the input variables. The least-squares approach produces a generalizer that has the form of a radial basis function network for a finite number of training samples. The finite sample approximation is valid provided that the perturbations due to noise on the expected operating conditions are large compared to the sample spacing in the data space. In the other extreme of small noise perturbations, a particular parametric form must be assumed for the generalizer. It is shown that better generalization will occur if the error criterion used in training the generalizer is modified by the addition of a specific regularization term. This is illustrated by an approximator that has a feedforward architecture and is applied to the problem of point-source location using the outputs of an array of receivers in the focal-plane of a lens

Published in:

Neural Networks, IEEE Transactions on  (Volume:5 ,  Issue: 3 )

Date of Publication:

May 1994

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.