Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

An improved algorithm for neural network classification of imbalanced training sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

The backpropagation algorithm converges very slowly for two-class problems in which most of the exemplars belong to one dominant class. An analysis shows that this occurs because the computed net error gradient vector is dominated by the bigger class so much that the net error for the exemplars in the smaller class increases significantly in the initial iteration. The subsequent rate of convergence of the net error is very low. A modified technique for calculating a direction in weight-space which decreases the error for each class is presented. Using this algorithm, the rate of learning for two-class classification problems is accelerated by an order of magnitude

Published in:

Neural Networks, IEEE Transactions on  (Volume:4 ,  Issue: 6 )