By Topic

Identification and decentralized adaptive control using dynamical neural networks with application to robotic manipulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Karakasoglu ; Dept. of Electr. & Comput. Eng., Arizona Univ., Tucson, AZ, USA ; S. I. Sudharsanan ; M. K. Sundareshan

Efficient implementation of a neural network-based strategy for the online adaptive control of complex dynamical systems characterized by an interconnection of several subsystems (possibly nonlinear) centers on the rapidity of the convergence of the training scheme used for learning the system dynamics. For illustration, in order to achieve a satisfactory control of a multijointed robotic manipulator during the execution of high speed trajectory tracking tasks, the highly nonlinear and coupled dynamics together with the variations in the parameters necessitate a fast updating of the control actions. For facilitating this requirement, a multilayer neural network structure that includes dynamical nodes in the hidden layer is proposed, and a supervised learning scheme that employs a simple distributed updating rule is used for the online identification and decentralized adaptive control. Important characteristic features of the resulting control scheme are discussed and a quantitative evaluation of its performance in the above illustrative example is given

Published in:

IEEE Transactions on Neural Networks  (Volume:4 ,  Issue: 6 )