By Topic

Hierarchical reachability graph of bounded Petri nets for concurrent-software analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Notomi, M. ; Dept. of Electr. Eng. & Comput. Sci., Illinois Univ., Chicago, IL, USA ; Murata, T.

Petri nets have been proposed as a promising tool for modeling and analyzing concurrent-software systems such as Ada programs and communication protocol software. Among analysis techniques available for Petri nets, the most general approach is to generate all possible states (markings) of the system in a form of a so-called reachability graph. However, this conventional reachability graph approach is inefficient or intractable, even for a bounded Petri net, due to state explosion in many practical applications. To cope with this problem, this paper proposes a method for constructing a hierarchically organized state space called the hierarchical reachability graph (HRG). Using the HRG, we obtain necessary and sufficient conditions for reachability and deadlock, as well as algorithms to test whether a given state or marking is reachable from the initial state and whether there is a deadlock state (a state with no successor states)

Published in:

Software Engineering, IEEE Transactions on  (Volume:20 ,  Issue: 5 )