By Topic

Dependability modeling and analysis of distributed programs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Lopez-Benitez, N. ; Dept. of Comput. Sci., Texas Tech. Univ., Lubbock, TX, USA

Presents a modeling approach based on stochastic Petri nets to estimate the reliability and availability of programs in a distributed computing system environment. In this environment, successful execution of programs is conditioned on the successful access of related files distributed throughout the system. The use of stochastic Petri nets is demonstrated by extending a basic reliability model to account for repair actions when faults occur. To this end, two possible models are discussed: the global repair model, which assumes a centralized repair team that restores the system to its original status when a failure state is reached, and the local repair model, which assumes that repairs are localized to the node where they occur. The former model is useful in evaluating the availability of programs (or the availability of the hardware support) subject to hardware faults that are repaired globally; therefore, the programs of interest can be interrupted. On the other hand, the latter model can be used to evaluate program reliability in the presence of hardware faults subject to repair, without interrupting the normal operation of the system

Published in:

Software Engineering, IEEE Transactions on  (Volume:20 ,  Issue: 5 )