By Topic

Detection and classification of buried dielectric anomalies using neural networks-further results

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Azimi-Sadjadi, M.R. ; Dept. of Electr. Eng., Colorado State Univ., Fort Collins, CO, USA ; Stricker, S.A.

The development of a neural network-based detection and classification system for use with buried dielectric anomalies is the main focus of this paper. Several methods of data representation are developed to study their effects on the trainability and generalization capabilities of the neural networks. The method of Karhonen-Loeve (KL) transform is used to extract energy dependent features and to reduce the dimensionality of the weight space of the original data set. To extract the shape-dependent features of the data, another data preprocessing method known as Zernike moments is also studied for its use in the detector/classifier system. The effects of different neural network paradigms, architectural variations, and selection of proper training data on detection and classification rates are studied. Simulation results for nylon and wood targets indicate superior performance when compared to conventional schemes

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:43 ,  Issue: 1 )