By Topic

On bends and distances of paths among obstacles in two-layer interconnection model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lee, D.T. ; Dept. of Electr. Eng. & Comput. Sci., Northwestern Univ., Evanston, IL, USA ; Yang, C.D. ; Wong, C.K.

We consider problems of finding assorted rectilinear paths among rectilinear obstacles in a two-layer interconnection model according to the number of bends and the 1-layer distance (y-distance). Using a horizontal wave-front approach, optimal θ(e log e) time algorithms are presented to find the shortest path and the minimum-bend path using linear space, and to find the shortest minimum-bend path and the minimum-bend shortest path using O(e log e) space, where e is the number of obstacle edges. By the same approach, we also derive an algorithm for finding a shortest two-layer distance (xy-distance) minimum-bend path in optimal θ(e log e) time using O(e log e) space

Published in:

Computers, IEEE Transactions on  (Volume:43 ,  Issue: 6 )