By Topic

Construction of check sets for algorithm-based fault tolerance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dechang Gu ; Dept. of Comput. Sci. Sch. of Eng., North Carolina A&T State Univ., Greensboro, NC, USA ; Rosenkrantz, D.J. ; Ravi, S.S.

Algorithm-based fault tolerance (ABFT) is a popular approach to achieve fault and error detection in multiprocessor systems. The design problem for ABFT is concerned with the construction of a check set of minimum cardinality that detects a specified number of errors or faults. Previous work on this problem has assumed an a priori bound on the size of a check. We motivate and carry out an investigation of the problem without the bounded check size assumption. We establish upper and lower bounds on the number of checks needed to detect a given number of errors. The upper bounds are obtained through new schemes which are easy to implement, and the lower bounds are established using new types of arguments. These bounds are sharply different from those previously established under the bounded check size model. We also show that unlike error detection, the design problem for fault detection is NP-hard even for detecting only one fault

Published in:

Computers, IEEE Transactions on  (Volume:43 ,  Issue: 6 )