By Topic

Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Taira, T. ; Fac. of Eng., Fukui Univ., Japan ; Kobayashi, Takao

The electrooptic characteristics of the KTP crystal are analyzed in detail and Q-switched operation of a diode-laser-pumped microchip Nd:YVO4 laser is reported using an intracavity KTP crystal. The KTP was used also as a frequency-doubling crystal in type II phase matching for generating pulsed green beams. Low loss and high efficiency characteristics were realized by eliminating two components, i.e., a Q-switching or a frequency-doubling crystal and a polarizer, in comparison with the conventional frequency-doubling configuration. Up to 15.4 W peak output and 18-ns width green power was obtained with 760-mW pumping power on the Nd:YV4 microchip, which corresponded to 616 times enhancement of the CW output power

Published in:

Quantum Electronics, IEEE Journal of  (Volume:30 ,  Issue: 3 )