By Topic

Movement of blood cells in liquid by nonuniform traveling field

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

A study of the motion of biological cells in aqueous solution using a traveling-field-type electric curtain device is performed. Cells driven by such a device undergo circular motions induced by the rotating traveling field, and as a result of field nonuniformity and drift in the direction of the wave propagation. Electrolytic dissociations of the aqueous medium are avoided by limiting the applied voltage below the theoretical dissociation voltage, while the field strength necessary for the actuation of the cell motion is insured by making the electrode dimensions as small as 100 μm. The experiments are performed using sheep erythrocytes. The device shows a maximum performance with six-phase voltage of frequency 3 Hz and amplitude 1.5 V, where the transport of cells takes place without perceivable damage to the cells

Published in:

IEEE Transactions on Industry Applications  (Volume:24 ,  Issue: 2 )