By Topic

Variable digital filter design using the outer product expansion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Deng, T.-B. ; Comput. Center, Inst. of Phys. & Chem. Res., Saitama, Japan ; Soma, T.

Digital filters with adjustable frequency domain characteristics are referred to as variable digital filters. Variable filters are useful in the applications where the filter characteristics are required to be changeable during the course of signal processing. Especially in real time applications, variable filters are needed to change their coefficients instantaneously such that the real time signal processing can be performed. The present paper proposes a very efficient technique for variable 1D digital filter design. Generally speaking, the variable coefficients of variable digital filters are multidimensional functions of a set of spectral parameters which define the desired frequency domain characteristics. The authors first sample the given variable 1D magnitude specification and use the samples to construct a multidimensional array, then propose an outer product expansion method for expanding the multidimensional array as the sum of outer products of 1D arrays (vectors). Based on the outer product expansion, one can reduce the difficult problem of designing a variable 1D digital filter to the easy one that only needs constant 1D filter designs and 1D polynomial approximations. The technique can obtain variable 1D filters having arbitrary desired magnitude characteristics with a high design accuracy

Published in:

Vision, Image and Signal Processing, IEE Proceedings -  (Volume:141 ,  Issue: 2 )