By Topic

Adaptive control of discrete-time nonlinear systems using recurrent neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jin, L. ; Intelligent Syst. Res. Lab., Saskatchewan Univ., Saskatoon, Sask., Canada ; Nikiforuk, P.N. ; Gupta, M.M.

A learning and adaptive control scheme for a general class of unknown MIMO discrete-time nonlinear systems using multilayered recurrent neural networks (MRNNs) is presented. A novel MRNN structure is proposed to approximate the unknown nonlinear input-output relationship, using a dynamic back propagation (DBP) learning algorithm. Based on the dynamic neural model, an extension of the concept of the input-output linearisation of discrete-time nonlinear systems is used to synthesise a control technique for model reference control purposes. A dynamic learning control architecture is developed with simultaneous online identification and control. The potentials of the proposed methods are demonstrated by simulation studies

Published in:

Control Theory and Applications, IEE Proceedings -  (Volume:141 ,  Issue: 3 )