By Topic

Jaggedness-free millimeter-resolution low coherence reflectometry

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
K. Takada ; NTT Opto-Electron. Labs., Tokai, Japan ; M. Horiguchi

We report a millimeter resolution optical low coherence reflectometer (OLCR) that exhibits reduced jaggedness in the Rayleigh backscatter signal. This OLCR was achieved by using an erbium-doped superfluorescent fiber source that can tune narrow-band superfluorescence (~0.2 nm full-width at half-maximum) over a 3-nm range with an output of -8 dBm, The signal averaging that resulted from wavelength tuning with this source efficiently reduced the jagged fluctuation to ±1.4 dB. The spatial resolution was 1.2 mm, and the hidden spaces defined by the full-widths at -20 dB and -60 dB maximum of a Fresnel response of the OLCR were 6 mm and 1.2 cm, respectively. These two hidden spaces are at least ten times narrower than those of a previously reported photon-counting OTDR, although their spatial resolutions are roughly the same. The OLCR enabled the weak Rayleigh backscattering near a connector joint to be measured with a dynamic range of 18 dB without any deconvolution. We confidently expect that this OLCR will be applied to short-haul optical fiber fault location

Published in:

Journal of Lightwave Technology  (Volume:12 ,  Issue: 4 )