Cart (Loading....) | Create Account
Close category search window

Electrooptical modulation in multiple quantum well hetero nipi waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Thirstrup, C. ; Mikroelektronik Centre, Tech. Univ. Denmark, Lyngby, Denmark ; Robson, P.N. ; Kam Wa, P.Li ; Pate, M.A.
more authors

An optical intensity modulator based on multiple quantum well hetero (MQW-H) nipi waveguides is reported. In the low optical power regime (~10-5 W), the modulator exhibits an extinction ratio in excess of 100:1 at low drive voltage (4 V) and 5-B attenuation. Modelling and experimental results of the time response of the waveguide modulator are presented, and it is shown that the response is limited by the RC time constant of the drive circuit and the photocurrent charging up a dielectric capacitance. The modelling shows that with a loss penalty of ~1.5 dB, the speed of the present waveguide modulator is limited solely by the RC time constant that would allow modulation speeds of ~100 ps

Published in:

Lightwave Technology, Journal of  (Volume:12 ,  Issue: 3 )

Date of Publication:

Mar 1994

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.