By Topic

An efficient analytical model for calculating trapped charge in amorphous silicon

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yao-Tsung Tsai ; Dept. of Electr. Eng., Nat. Central Univ., Chung-Li, Taiwan ; Kuo-Don Hong ; Yin-Lun Yuan

We present an efficient analytical model for calculating the trapped-charge density as a function of Fermi energy based on two exponential regions for density-of-states distribution in hydrogenated amorphous silicon. In this efficient model, the trapped-charge density is calculated without numerical integration and without curve fitting as a function of Fermi energy. Comparisons between the analytical and the numerical models have been made and excellent agreement has been obtained. Such a model is useful as an aid to study the impact on the performance of amorphous-silicon devices such as thin-film transistors

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:13 ,  Issue: 6 )