By Topic

Block placement with a Boltzmann Machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. De Gloria ; Dept. of Biophys. & Electron. Eng., Genoa Univ., Italy ; P. Faraboschi ; M. Olivieri

The Boltzmann Machine is a neural model based on the same principles of simulated annealing that reaches good solutions, reduces the computational requirements, and is well suited for a low-cost, massively parallel hardware implementation. In this paper we present a connectionist approach to the problem of block placement in the plane to minimize wire length, based on its formalization in terms of the Boltzmann Machine. We detail the procedure to build the Boltzmann Machine by formulating the placement problem as a constrained quadratic assignment problem and by defining an equivalent 0-1 programming problem. The key features of the proposed model are: (1) high degree of parallelism in the algorithm, (2) high quality of the results, often near-optimal, and (3) support of a large variety of constraints such as arbitrary block shape, flexible aspect ratio, and rotations/reflections. Experimental results on different problem instances show the skills of the method as an effective alternative to other deterministic and statistical techniques

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:13 ,  Issue: 6 )