By Topic

An analog processor architecture for a neural network classifier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
M. Verleysen ; Katholieke Univ., Leuven, Belgium ; P. Thissen ; J. -L. Voz ; J. Madrenas

Many neural-like algorithms currently under study support classification tasks. Several of these algorithms base their functionality on LVQ-like procedures to find locations of centroids in the data space, and on kernel (or radial-basis) functions centered on these centroids to approximate functions or probability densities. A generic analog chip could implement in a parallel way all basic functions found in these algorithms, permitting construction of a fast, portable classification system.<>

Published in:

IEEE Micro  (Volume:14 ,  Issue: 3 )