By Topic

Unified full wave solutions to interpret Apollo lunar surface data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bahar, E. ; Dept. of Electr. Eng., Nebraska Univ., Lincoln, NE, USA ; Haugland, M.

Bistatic radar experiments carried out by Tyler and Howard during the Apollo 14, 15, and 16 missions provide a very useful dataset with which to compare theoretical models and experimental data. Vesecky et al. (1988) report that their model for near grazing angles compares favorably to experimental data. However, for angles of incidence around 80°, all the analytical models considered by Vesecky et al. predict values for the quasi-specular cross sections that are about half the corresponding values taken from the Apollo 16 data. In this work, questions raised by this discrepancy between the reported analytical and experimental results are addressed. The unified full wave solutions are shown to be in good agreement with the bistatic radar data taken during Apollo 14 and 16 missions. Using the full wave approach, the quasi-specular contributions to the scattered field from the large scale surface roughness as well as the diffuse Bragg-like scattering from the small scale surface roughness are accounted for in a unified self-consistent manner. Since the full wave computer codes for the scattering cross sections contain ground truth data only, it is shown how it can be readily used to predict the rough surface parameters, based on the measured data

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:32 ,  Issue: 1 )