Cart (Loading....) | Create Account
Close category search window

Synthetic aperture FM-CW radar applied to the detection of objects buried in snowpack

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yamaguchi, Y. ; Dept. of Inf. Eng., Niigata Univ., Japan ; Mitsumoto, M. ; Sengoku, M. ; Abe, T.

Presents the principle of synthetic aperture frequency modulated continuous wave (FM-CW) radar and demonstrates the detection results of several objects buried in natural snowpack using the radar system. First, the synthetic aperture technique is explained with emphasis placed on showing that the Fourier transformed beat signal obtained by the FM-CW radar is equivalent to one kind of Fresnel hologram, which leads the authors to use the SAR technique. Then a radar system operative in the microwave L-band is explored to detect objects buried in natural snowpack. Several detection results are presented demonstrating the potential capability of high resolution imaging in the azimuth direction, comparing with real aperture images

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:32 ,  Issue: 1 )

Date of Publication:

Jan 1994

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.